
ISTANBUL TECHNICAL UNIVERSITY

FACULTY OF ELECTRICAL AND ELECTRONICS ENGINEERING

IMAGE INPAINTING

BSc Thesis by

Aziz KOÇANAOĞULLARI

040090356

Department : Electronics Engineering

Programme : Electronics Engineering

Supervisor : Associate Professor İlker BAYRAM

May 2014

ISTANBUL TECHNICAL UNIVERSITY

FACULTY OF ELECTRICAL AND ELECTRONICS ENGINEERING

IMAGE INPAINTING

BSc Thesis by

Aziz KOÇANAOĞULLARI

040090356

Department : Electronics Engineering

Programme : Electronics Engineering

Supervisor : Associate Professor İlker BAYRAM

May 2014

Special thanks to my supervisor İlker BAYRAM who has never spared his help, atten-

tion and valuable time, for providing me such an opportunity for this graduation project

and for the idea of ’Image Inpainting’.

Also thanks to my entire family, especially to my mother, father and brother for the

unending support and encouragement.

May 2014 Aziz KOÇANAOĞULLARI

ii

Summary

Inpainting is the process of reconstructing lost or deteriorated parts of images or videos.

Image inpainting is used wherever image reconstruction is required. For example, photo

reconstruction, real world object removal, biological image restoration/inpainting. In each

case, the goal is to merge inpainted region into the original image. In order to prevent typ-

ical user to be aware of any modification occurred.

The ancestral processors of inpainting operation are artists. Considering the damaged

artistic landmarks the reconstruction is still carried on by professionals. But it is impos-

sible to reconstruct each image of a video by hand. The aim of this project is to perform

inpainting process automatically by using an algorithm. Image inpainting problem is ex-

plained with all steps for constructing a solution for the problem as well.

Denoising is another focus of this project. Denoising process can be considered as an

inpainting since it aims to reconstruct the image. The difference is in denoising operation

one has the knowledge of the form of the noise. As statistical measurements estimate

properties of the noise, the algorithm that cleanses the image is highly dependent on this

form.

Özet

İç boyama bozulmaya uğramış görüntü veya videoların onarımı işlemi olarak tanımlanır.

Görüntü iç boyamadan, görüntü işlemenin, düzeltmenin gerekli görüldüğü her alanda

yararlanılır. Fotoğraf onarımı, resimden obje çıkarılması, tıbbi sistemlerdeki görüntü

düzeltme işlemleri kullanım alanına örnek olarak verilebilir. Verilen her durumda da

esas olan amaç bozulmuş bölgenin onarımı ve görüntünün eski haline getirilmesidir. Bu

işlemin kalitesi ise değiştirmenin ve bozulmanın mümkün olduğunca görsel olarak dikkat

çekmemesi ile ölçülür.

Görüntü iç boyama tarih boyunca süre gelmiş bir işlemdir. Bu işlem geçmişte ressam-

lar tarafından gerçekleştirilmiştir. Günümüzde sanat eserleri göz önüne alındığında, bozul-

maların onarılması hala uzmanlar tarafından yürütülmektedir. Videoları ele aldığımızda

ise bu işlemin elle yapılması gereksiz zaman harcamasına sebebiyet verecektir. Bu ne-

denle bu işlemin otomatik olarak yapılmasına ihtiyaç duyulmaktadır. Bu tezde iç boyama

işlemini otomatik olarak gerçekleştirebilecek bir algoritma tanımlanmış, algoritmanın

oluşumu problem tanımından itibaren basamaklarıyla açıklanmıştır.

Gürültü azaltma ise tezde yer alan bir diğer odak noktasıdır. Gürültü giderme işlemi

de iç boyamaya benzer bir amaç gütmektedir. Amacı görüntüyü daha iyi bir hale ge-

tirmek, onarmaktır. Aralarındaki fark ise gürültü giderme işleminde resim üzerindeki

bozulmaların belli bir formda olması ve bu formun kestirilebiliyor olmasıdır. İstatistiksel

olarak gürültü biçimi çok net bir biçimde belirlenebildiğine göre çözüm de bu yönde iler-

lemelidir. Tezde çözümün basamakları incelenmiştir.

Contents

1 Introduction 1

2 Inpainting Problem 3
2.1 Douglas-Rachford Algorithm . 3
2.2 DWT (Discrete Wavelet Transform) . 5

2.2.1 Sinusoidal Decomposition . 5
2.2.2 Haar Wavelet . 6

3 Inpainting in 1D 13
3.1 Discrete Cosine Transform . 13
3.2 Douglas Rachford Algorithm and Application 14

4 Inpainting in 2D (Image Inpainting) 17
4.1 The Orthogonal Transformation Matrix 17
4.2 Douglas Rachford Algorithm . 18
4.3 Application . 19

4.3.1 Number of Iterations . 19
4.3.2 Characteristics of the Damage 20
4.3.3 SOFT Thresholding . 21

4.4 Graphical User Interface . 22
4.4.1 Instructions . 22

5 Denoising 24
5.1 Denoising Problem . 24

5.1.1 Maximum Likelihood Estimation 24
5.1.2 Bayesian Interface . 25
5.1.3 MAP Estimation . 25

5.2 Estimation of λ (SURE) . 27
5.3 Combination . 29

v

Chapter 1

Introduction

This BSc thesis includes solutions and examples on inpainting and denoising problems

on images.

The second chapter defines the inpainting problem and investigates the theory. The

problem is recovering damaged parts of an image using the undamaged parts. In order to

solve this problem, one requires a discrete wavelet transform and an iterative algorithm to

solve the minimization problem. In this chapter Douglas-Rachford algorithm is defined.

Also required discrete wavelet transforms are introduced. The section also introduces that

the Algorithm yields the result ’SOFT Thresholding’;

m∗ =


Wz+λ if Wz ∈ (−∞,−λ)

0 if Wz ∈ [−λ,λ]

Wz−λ if Wz ∈ (λ,∞)

The following two chapters include solutions of the inpainting problem in 1D and

2D. In 1D problem discrete cosine transform is used as the wavelet transform. In 2D Haar

Wavelet is used as the transform. In 2D section the algorithm is simplified as;

• za=zb← damaged image

• Repeat;

– za(damaged part)=zb(corresponding)

– mc = Threshold (DWT(2za− zb))

– z∗b = IDWT (mc)− (zb− za)

– zb = z∗b

• Finish z f in = za with za(damaged part)=z∗b(corresponding)

The fourth chapter also includes the effects of the variables. Each condition is ex-

plained in details with examples. To give a brief visualization of the process; There exists

Figure 1.1: Image Inpainting

a GUI for the inpainting process where the user can determine operation variable values.

The fifth chapter is about ’Denoising’ problem. In this section denoising solution

yields SOFT thresholding under assuming that noise is in Gaussian form and signal is in

Laplacian form. Threshold value λ is calculated by using SURE Estimation. This is a

requirement to decide the quality of the result from the input as one has no information

about the original form of the image. To visualize the process;

Figure 1.2: De-Noising Process

2

Chapter 2

Inpainting Problem

The inpainting problem involves the recovery of damaged parts of an image using the un-

damaged parts. There are two major points to be taken in consideration while modelling

the problem [1];

Since one has the information of location of the damaged parts it forms a constraint

for the problem. The damaged parts and the original ones should be treated differently.

Secondly, there are different orthogonal transformation matrices that yield sparse re-

sults for images and this characteristic is true for any image. By sparsity one should

understand a data with mostly ’0’ values. This can be used for estimating the image using

the deteriorated one. By using these two the inpainting problem can be formed as;

argmin
z∈C
‖WI‖1 (2.1)

Where W:=discrete wavelet transform, I:= input image, P:= Index values of uncor-

rupted samples. We can define a new set of values using these indices (P).

C = {z : z(n) = x(n) f or ∀n∈P}Other elements are corresponding to the iteration vector.

The following sections include detailed explanation of the solution of the problem.

2.1 Douglas-Rachford Algorithm

The Algorithm [2] gives a solution for optimization problems in the form of;

argmin
z

f (z)+g(z)

So the original inpainting optimization problem should be modified.The original prob-

lem is based on minimization of the l1 norm of the transformation of the given signal wrt.

the known elements;

argmin
z∈C
‖Wz‖1 = argmin

z
‖Wz‖1 + ic(z) (2.2)

Where the function ic(z) applies the constraint:=

 0 if z ∈C

∞ if z 6∈C

The optimization problem is in the desired form where f(z)= ‖Wz‖1 and g(z)=ic(z).

This problem should be solved by using the algorithm.

Douglas-Rachformd Algorithm is;

Repeat: z← Jλ
f

(
2Jλ

g (z)− z)+(z− Jλ
g (z))

Until: converge z← Jλ
g (z)

Where Jλ

h (z) = argmin
u

1
2λ
‖z−u‖2

2 +h(u)

First the Jλ
g should be solved. The minimization problem has the aim to minimize the

distance between two points (‖z− u‖2). Since the solution is highly dependent on ic(z)

the solution should be separated into two parts;

u∗ = argmin
u∈C
‖z−u‖2

2→

 u∗(n) = x(n) if n ∈ P

u∗(n) = z(n) if n 6∈ P

In short; for the elements of damaged parts the function directly gets the values from the

iterated vector.

Secondly Jλ
f is required to be solved;

Jλ
f = u∗ = argmin

u
1

2λ
‖z−u‖2

2 +‖Wu‖1

Since W is orhagonal it doesnt change the distance between two vector values. In other

words the l2 norm does not change. Because the logarithm is a strictly increasing function

for positive real numbers. (‖z−u‖2
2 = ‖Wz−Wu‖2

2) and with the change of parameter

m =Wu; (2.3)

m∗ = argmin
m

1
2λ
‖Wz−m‖2

2 +‖m‖1 (2.4)

4

This directly corresponds to the ’Soft Thresholding Problem’. The solution of the

given problem is;

m∗ = (m|∂ f (m,z,λ)
∂m

= 0) = g(z,λ) (2.5)

∂
(1

2λ
(Wz−m)2 +m

)
∂m

= 0 →Wz = m+λ | m > 0

∂
(1

2λ
(Wz−m)2−m

)
∂m

= 0 →Wz = m−λ | m < 0

(2.6)

Since the variable z is analogously m∗;

m∗ =


Wz+λ if Wz ∈ (−∞,−λ)

0 if Wz ∈ [−λ,λ]

Wz−λ if Wz ∈ (λ,∞)

Since m =Wu, directly u∗ =W T m∗ = Jλ
f (z).

2.2 DWT (Discrete Wavelet Transform)

The optimization problem is highly dependent on a transform which satisfies the orthog-

onality condition and yields a sparse result. There should be an inverse transform W T for

receiving the image after operation as well where;

W T ×W = I(identity matrix)

As mentioned before there are variety of options. Hence it is enough to examine two

possibilities of these transformations. The first ’discrete cosine transform’ which is going

to be referred in the ’1D inpainting’ section, the second ’haar decomposition’ which is

the decomposition applied for ’image inpainting’.

2.2.1 Sinusoidal Decomposition

Sinusoidal decomposition [6] is nothing but decomposing the signal into periodic func-

tions and the most common periodic functions are sinusoidal .

Sinusoidal decomposition can be explained by using Fourier transform. Fourier trans-

form for discrete signals is defined as;

5

X(k) =
∞

∑
n=−∞

x(n)e− jwn (2.7)

Where w = 2πk
N N:=length of the signal

Instead of decomposing the signal using complex exponentials we can use real valued

periodic functions as operators. Sine and cosine functions are suitable since they form an

orthonormal basis as their inner product over one period is ’0’ and their magnitude is ’1’.

It stays the same for any harmonic.

e.g.:
T
2∫

t=− T
2

cos(nwt)sin(mwt)dt =−cos
(

wt(m−n)
)

2w(m−n) − cos
(

wx(m+n)
)

2w(m+n)

∣∣ T
2
− T

2
= 0

since m and n are integer values and cos(-x)=cos(x)

The sinusoidal representation of an periodic signal is;

fn(t) = a0 +
∞

∑
n=1

ancos(nw0t)+bnsin(nw0t) where w0 =
2π

T

The construction can be represented in matrix notation;

f (n) =WNxN×Coe f f icentsNx1 where;

W = [f ,g] where the elements are defined as;

fk(n) = sin2π

N kn k ∈
[
1, N

2

]
gk(n) = cos2π

N kn k ∈
[
0, N

2 −1
]

It is clear that as the n ∈ N the W matrix will be NxN.

2.2.2 Haar Wavelet

Haar Decomposition

Haar decomposition is used for splitting the data into two parts, high-pass coefficients and

low-pass coefficients. The important part is the length of the input matrix always divided

by ’2’ after each operation. Consider c[n] as approximation and d[n] as details. It can be

clearly said that size(merge(c[n],d[n])=size(x[n]). It doesn’t matter how many steps are

used. The merged data of all decompositions is the same size as the input. Haar filter

bank is shown below [10];

6

x[n] H11

H01

↓ 2

↓ 2 H12

H02

↓ 2

↓ 2

H0 =
x[n]+ x[n−1]√

2
H1 =

x[n]− x[n−1]√
2

(2.8)

The process is applied on both vertical and horizontal directions one after the other. Dis-

crete wavelet transform is the 2D application of ’Haar’ wavelet. The definitions of the

Haar Decomposition and the Discrete Wavelet Transform are;

1 function [c,d] = HaarAnalysis(x)
2 % Input variables
3 % x : input signal
4 % Output Variables
5 % c : Lowpass coefficients
6 % d : Highpass coefficients
7

8 if mod(length(x),2),
9 x = [x 0];

10 end
11

12 c = (x(1:2 :end) + x(2:2 :end))/sqrt(2);
13 d = (x(1:2 :end) - x(2:2 :end))/sqrt(2);
14 end

It’s clear that analysis operation can be defined as elementary additions and subtrac-

tions where functions are just a linear operation between coefficients and the signal values

(↓2 in analysis is included.).

1 function [II , step] = DWT(I , step)
2 %I := Input signal (uint8)
3 %steup := number of steps
4 %II := Output signal (double)
5

6 %c := Lowpass coefficents
7 %d := Highpass coefficents
8

9 %Conversion to double required
10 %uint8 varies between 0-255 which can't hold negative numbers
11 %negative numbers are recieved while calculating d(highpass coef.)
12 I=double(I);

7

13

14 [m,n]=size(I);
15

16 %number of steps
17 for(x = 0 : step -1)
18

19 %Rowwise analysis
20 for(i=1:m/(2ˆx))
21

22 [c,d]=HaarAnalysis(I(i,1:m/(2ˆx)));
23 I(i,1:m/(2ˆx))=[c d];
24 end
25

26 %Columnwise analysis
27 for(i=1:n/(2ˆx))
28

29 [c,d]=HaarAnalysis(transpose(I(1:n/(2ˆx),i)));
30 I(1:n/(2ˆx),i)=[transpose(c);transpose(d)];
31 end
32 end
33

34 II=I;
35

36 end

It should be proven that the decomposition matrix ’W’ is orthogonal and yields sparse

results. The conditions are required for solving the inpainting optimization problem using

Douglas Rachford algorithm. The conditions are checked for DWT with ’5’ steps (It’s

possible to run the algorithm over the same image for several times.).

The first condition required for W is to be orthogonal. DWT is orthogonal and can be

checked by using the MATLAB code;

1 % Creation of the 128x128 DWT matrix of '5' steps
2 test = DWT(eye(128),5)
3

4 %sum(<1st col, 2nd col >)
5 sum(test(:,1).*test(:,2));
6

7 ans =
8 0

This also can be measured by checking total power values. Since the transformation

is orthonormal it applies no change to the power of the signal;

X ∼N (10,102) Y6X6 = DWT ((X6X6),1)

PX and PY := powers

1 X=10*randn(6,6)+10;
2 Y=DWT(X,1);
3 PX=sum(X(:).ˆ2);
4 PY=sum(Y(:).ˆ2);

8

DWT is applied just for one step. This is because the length of the signal is 6 where

the c and d matrices have length 3 in one operation and it can’t be divided into two;

1 PX = 8.2308e+003
2 PY = 8.2308e+003

clearly shows that their powers are equal.

Since the Wx transformation has to be ’sparse’, DWT should satisfy the same condi-

tion as well. To visualize;

Figure 2.1: original fig.,DWT(fig,5)

The DWT with 5 steps seems pretty sparse and can be used for inpainting problem.

But there is a need for W T as well. As the transformation matrix is orthogonal it is

possible to define one.

Haar Composition

DWT is a linear operation which means it can be inverted. Inverse discrete wavelet trans-

form is the filter operation which synthesizes the signal from orthonormal basis [10].

9

z[n]G01

G11

↑ 2

↑ 2

G02

G12

↑ 2

↑ 2 ++

G0 =
x[n]+ x[n+1]√

2
G1 =

x[n]− x[n+1]√
2

(2.9)

The synthesis filter is highly dependent on the analysis filter. Considering a simple

system with 1 decomposition and 1 synthesis steps;

z[n]x[n] +

H0 G0↓ 2 ↑ 2

H1 G1↓ 2 ↑ 2

Consider each block as an LTI system in discrete time. Then they can be represented with

their ’z’ transforms in frequency domain. Down-sampling with 2 (1) and up-sampling

with 2 (2) in ’z’ domain are [5];

(1) X ′(z) = 1
2

[
X(z

1
2)+X((−z)

1
2)
]

(2) X ′(z) = X(z2)

So that any signal going through up-sampling after down-sampling has the form;

X ′(z) = 1
2

[
X(z)+X(−z)

]
The input signal is X(z)H0(z) and is used as an input of the system G0(z), it’s the same

for the second row as well. The total equation of the system is;

X(z) = 1
2 ×
[
G0(z)[H0(z)X(z)+H0(−z)X(−z)]+G1(z)[H1(z)X(z)+H1(−z)X(−z)]

]

10

In matrix notation;

X(z)=1
2

[
G0(z) G1(z)

]  H0(z) H0(−z)

H1(z) H1(−z)

  X(z)

X(−z)


[

G0(z) G1(z)
]  H0(z) H0(−z)

H1(z) H1(−z)

=
[

2 0
]

 H0(z) H0(−z)

H1(z) H1(−z)

=Hm

 G0(z)

G1(z)

= 2(
det(Hm(z)

) ×
 H1(−z)

−H0(−z)

 ∗

Using (*);

det(Hm(x)) = 2z−1 H0(z) = 1+z−1
√

2
H1(z) = 1−z−1

√
2 G0(z)

G1(z)

=

 1+z√
2

1−z√
2


Inverse ’z’ transforms of the given filters are the exact values defined at the beginning.

Matlab definitions of the Haar Synthesis and ’Inverse Discrete Wavelet Transform’

are;

1 function [y] = HaarSynthesis(c,d)
2 %Input variables
3 %c : Lowpass coefficents
4 %d : Highpass coefficents
5 %Output variables
6 %y : Output signal
7

8 y = zeros(1,2*length(c));
9 y(1:2 :end) = (c + d)/sqrt(2);

10 y(2:2 :end) = (c - d)/sqrt(2);

Just like in analysis operation, synthesis is just a linear operation between coefficients
and the signal values (↑2 in synthesis is included.).

1 function [II] = IDWT(I , step)
2 %I := Input signal (double)
3 %II := Output signal (uint8)
4

5 %c := Lowpass coefficents

11

6 %d := Highpass coefficents
7

8 [m,n]=size(I);
9

10 for(k = 0 : step -1)
11

12 x = step -1-k;
13

14 c=I(1:m/(2ˆ(x+1)),1:n/(2ˆx));
15 d=I(m/(2ˆ(x+1))+1:m/(2ˆx),1:n/(2ˆx));
16

17 %Columnwise synthesis
18 for(i=1:n/(2ˆx))
19

20 I(1:m/(2ˆx),i)=transpose(HaarSynthesis(..
21 ..transpose(c(:,i)),transpose(d(:,i))));
22 end
23

24 c=I(1:m/(2ˆx),1:n/(2ˆ(x+1)));
25 d=I(1:m/(2ˆx),n/(2ˆ(x+1))+1:n/(2ˆx));
26

27 %Rowwise synthesis
28 for(i=1:m/(2ˆx))
29

30 I(i,1:n/(2ˆx))=HaarSynthesis(c(i,:),d(i,:));
31 end
32

33 end
34

35 %Conversion to 8bit
36 II=(I);
37

38 end

To verify that the IDWT is perfectly the DWT−1 we can simply process any data and

check the RMS. First we can again use the random sequence of X used before and apply

the wavelet transforms over ’5’ steps as;

X ∼N (10,102) Y32X32 = DWT ((X32X32),5) Z32X32 = IDWT (Y,5)

1 X=10*randn(32,32)+10;
2 Y=DWT(X,5);
3 Z=IDWT(Y,5);
4 RMS=sum(sum((X-Z).ˆ2));
5

6 RMS =
7 2.9770e -010

Which is suitable.

12

Chapter 3

Inpainting in 1D

This section is about solution of inpainting problem in 1D. Douglas Rachford Algorithm

is applied, using discrete cosine transform as the orthogonal transformation.

3.1 Discrete Cosine Transform

For sparse signals in 1D the discrete cosine transformation is expected to be sparse. And

there is a linear relation between coefficients and the data. We take the IDCT of a sparse

vector and then set an interval of the produced signal to zero, in order to construct the

’observation signal’. The discrete cosine transform matrix is not defined by hand but a

function of Matlab is used.The matrix W can be created simply by using the dct() function

in MATLAB. The inverse discrete cosine transform is a linear operation. We denote it as

W. we know that multiplying with identity gives the matrix itself. By W can be computed,

also x can be computed by given coefficients.

1 %SIGNAL CONSTRUCTION
2 %DCT matrix
3 W=(idct(eye(128)))';
4

5 coeff=zeros(128,1);
6

7 for(n=1:5)
8 coeff(randi(128,1),1)=abs(5*randn(1));
9 end

10

11 x=W'*coeff;
12 xd=x;
13 xd(45:65 ,1)=0;

It’s clear that with idct(), W T is computed then it’s transpose is taken. The damaging

process is applied for the values for indexes i ∈ [45:65].

Results;

Figure 3.1: Signal construction and damaging results

3.2 Douglas Rachford Algorithm and Application

Now one should apply the algorithm on the damaged image to make an approximation.

The algorithm solution can be simplified as;

• za=zb← damaged signal

• Repeat;

– za(damaged part)=zb(corresponding)

– mc = Threshold (W(2za− zb))

– z∗b =W T mc− (zb− za)

– zb = z∗b

• Finish z f in = za with za(damaged part)=z∗b(corresponding)

14

za(damaged) = zb corresponds to the projection of the given signal. As given in the prob-

lem solution the minimization problem gets the exact values if the point is an element of

the original signal, otherwise it takes the exact value as well in order to minimize the l1

norm.

The threshold part corresponds to single valued thresholding since the required func-

tion is in the form of;

x∗ =


y+λ if y ∈ (−∞,−λ)

0 if y ∈ [−λ,λ]

y−λ if y ∈ (λ,∞)

The matlab algorithm for soft thresholding is;

1 function [xmin] = MinCF (y, lambda)
2

3 % f(x) = (((y - x)ˆ2)/2) + lambda * abs(x)
4 % xmin = arg (min F(y, lambda))
5

6 [m,n] = size(y);
7 xmin = zeros(m,n);
8

9 for (ii=1 : m)
10 for (i=1 : n)
11

12 if (lambda < y(ii,i))
13 xmin(ii,i) = y(ii,i) - lambda;
14

15 elseif(y(ii,i) < -lambda)
16 xmin(ii,i) = y(ii,i) + lambda;
17

18 else xmin(ii,i) = 0;
19

20 end
21 end
22 end

The application of the algorithm is as follows;

1 %APPROXIMATION
2 za=xd; %xd:=Damaged Signal
3 zb=xd;
4

5 for n=1:itnum %itnum:=number of iterations
6

7 za(45:65,1)=zb(45:65,1);
8 zb=W'*MinCF(W*(2*za-zb),lambda)+(zb-za);
9

10 end
11

12 za(45:65,1)=zb(45:65,1);

15

Results after application of the algorithm on damaged signal;

Figure 3.2: ’1D’ inpainting

The algorithm depends on the condition that, the damaged interval is known. E.g.

in the given signal x[45:65,1] is damaged and the algorithm is built on restoring this

interval. Also the iteration number is chosen as ’100’ which is extremely high. Depending

on empirical results ’20’ is enough for perfect fitting. By empirical results one should

understand RMS values on different iteration numbers (While λ is constant.).

16

Chapter 4

Inpainting in 2D (Image Inpainting)

Since the algorithm yields almost perfect results in 1D and proven itself, the solution can

be extended for 2D.

4.1 The Orthogonal Transformation Matrix

It’s discussed in the previous sections that what to use in order to satisfy the conditions

for inpainting problem. Since Haar Wavelets are suitable for the problem. Hence one can

use DWT constructed on Haar Analysis basis and IDWT which has Haar Synthesis basis

as W and W T .

Just to draw attention again, Haar decomposition is in the form;

c[n] = x[2n]+x[2n−1]√
2

and d[n] = x[2n]−x[2n−1]√
2

then HD(x[n]) = [c[n],d[n]]

Since the linear transformation is formed. There’s also a requirement for it’s inverse.

Which is also defined as Haar Reconstruction. Where;

c∗[n] =↑ (c[n],2) and d∗[n] =↑ (d[n],2) which correspond to up-sampling.

c∗∗ = c∗[n]+c∗[n+1]√
2

and d∗∗[n] = d∗[n]−d∗[n+1]√
2

Then;

HR(c[n],d[n]) = c∗∗[n]+d∗∗[n]

4.2 Douglas Rachford Algorithm

The minimization problem argmin
z∈P
‖Wz‖1 = argmin

z
‖Wz‖1+ ic(z) was solved using Dou-

glas Rachford Algorithm in the previous sections. The Algorithm can be modified for the

2D data as;

Repeat: z← Jλ
f

(
2Jλ

g (z)− z)+(z− Jλ
g (z))

Until: converge z← Jλ
g (z)

Where Jλ

h (z) = argmin
u

1
2λ
‖z−u‖2

2 +h(u)

Jλ
g yields the projection of the damaged points directly into approximation. Jλ

f yields

the SOFT thresholding wrt. ’λ’.

Simplified algorithm is;

• za=zb← damaged image

• Repeat;

– za(damaged part)=zb(corresponding)

– mc = Threshold (DWT(2za− zb))

– z∗b = IDWT (mc)− (zb− za)

– zb = z∗b

• Finish z f in = za with za(damaged part)=z∗b(corresponding)

It’s clear that there’s no difference in modelling the problem between ’1D’ and ’2D’. The

MATLAB code for the Algorithm is;

1 %APPROXIMATION
2 za=id;
3 zb=id;
4 for iterations=1:itnum
5 for(count=1:(length(m)))
6 za(m(count),n(count))=zb(m(count),n(count));
7 end
8 zb=IDWT(MinCF(DWT((2*za-zb),step),lambda),step)+(zb-za);
9 end

10 for(count=1:(length(m)))
11 za(m(count),n(count))=zb(m(count),n(count));
12 end

Where [m,n] := indices of the damaged parts.

18

4.3 Application

As the requirements are fulfilled the only thing is to observe the results. Since the results

are highly dependent on factors, ’λ’, ’iteration numbers’ and the ’damage’ itself all factors

are taken in consideration. All these factors are going to be examined;

4.3.1 Number of Iterations

Increase in iteration numbers directly increases the approximation quality. However, the

trade-off should be handled. Although the more iterations increase the quality it also

increases the process time length. As mentioned in ’1D’ section it can be found by calcu-

lating the RMS values for different ’number of iteration’s. Where;

RMS = ∑
m

∑
n
(za(m,n)− i(m,n))2 for za := approximation i := image.

As the RMS values are calculated while other variables are constant, it’s seen that the

iteration quality wrt. RMS converges.For the damaged image;

Figure 4.1: damaged image

Reconstruction algorithm is run for different values of iteration numbers and they are

calculated as;

Iterations;
It.Num.= 1 → RMS = 9.5325e×106

It.Num.= 20 → RMS = 3.3320×105

It.Num.= 30 → RMS = 3.3225×105

It.Num.= 80 → RMS = 3.3053×105

It.Num.= 150→ RMS = 3.2916×105

It’s clear that iterating ’100’ times is enough.

19

4.3.2 Characteristics of the Damage

The inpainting problem is approximating the original image from it’s damaged form. If

there’s a critical loss of information on the image the algorithm can not expect the original

form.

Assume a set of damaged pixels with radius ’r’ in the image. DWT contains the

information about differences and means of the image and because of the continuity of

the damage it is harder to expect the characteristics of the original form. Hence, it’s harder

to reconstruct the pixel at the center as ’r’ increases.

To visualize this, the damage can be modified. But there are no mathematical values

calculated. This is possible to see the quality of the approximation;

λ:=50 It.Num.:=100

Figure 4.2: damaged image and nearly perfect reconstruction

Figure 4.3: damaged image with thicker continuous sets and it’s approximation

This is clear that the characteristics of the damage also effect the reconstruction perfor-

mance. Critically damaged area is filled with the gray tone of the neighbouring pixels

after ’200+’ iterations which is the most brute approximation.

20

Figure 4.4: critically damaged image with a huge number of neighbouring pixels

4.3.3 SOFT Thresholding

Inpainting problem highly rely on the SOFT thresholding [7]. The thresholding is com-

puted during the Douglas Rachford Algorithm examination, l1 minimization problem

yields single valued thresholding.

Thresholding is applied on the DWT of the image to converge each part to the neigh-

bouring ones. Since the operation is highly dependent on λ so does the inpainting. De-

pending on the different values of λ transformed pixels are pressured around zero.

There is an optimum λ value that minimizes the RMS. It’s clear that with λ=0 there

is no thresholding, then image stays as it is. On the other hand, if λ is increased above

requirement, the original image will be thresholded and become undesirably smoother.

The effects of λ on the image can be simply visualised by calculating RMS value on an

image;

Figure 4.5: damaged image, RMS values for different λ values

21

4.4 Graphical User Interface

As the problem solution is highly dependent on variables like λ, iteration numbers and

DWT step size, a graphical user interface that processes the image in real time can be

formed by using MATLAB;

Figure 4.6: Preview of the GUI

The GUI calculates the reconstruction of the image wrt. given input variables λ and

iteration numbers. The default values of the variables are, λ=5, it.num.=10. The deter-

mination of the lambda is free of any mathematical expression and determined by vision

only. Since the wellness of the image is determined visually the approximation is left to

the user.

4.4.1 Instructions

The GUI is simple. The only requirement is to define the process variables and submit

them. Then moving the λ cursor automatically starts the process. Although it is supposed

to be real time process, the run time of the algorithm limits the ability.

Also changing input file requires manual adjustment in the code, by input file one

should understand both the original image and the damaged one. Original image is shown

in the GUI just to provide the user the ability of comparison.

22

The simplified instructions are;

• Run the GUI.

• The GUI starts with default variable values.

• Adjust the process variables.

• Observe the difference in inpainting using slide bar for λ.

23

Chapter 5

Denoising

5.1 Denoising Problem

Given an input image x[n] and noise n[n]. De-noising process is the estimation of x[n]

from the noisy data y[n]=x[n]+n[n]

De-noising using filter banks [8] can be considered as;

y[n] DWT T H IDWT z[n]

z[n] := cleared input signal

For understanding the problem one should observe the probability operations of ’Bayesian

Interface’ that directly corresponds to SOFT thresholding. DWT and IDWT functions are

the Haar wavelets that are used in solving the inpainting problem before.

5.1.1 Maximum Likelihood Estimation

Maximum likelihood [3] is a determination method the true data probability. Given data

set D(x1,x2,,xn) | xi ∈ Rd , Definition;

θMLE is a MLE for θ

θMLE = argmax
θ∈Θ

p(D|θ)

p(D|θ) = p(x1,x2, ...,xn|θ) =
n

∏
i=1

p(xi|θ)
(5.1)

The aim of the MLE is to find the θ value which maximizes the probability density

function of the given data. The problem is there’s no condition if the mass is concentrated

around the maximized probability. The maximum value can be represented by a spike in

the pdf hence the concentration of mass can be higher somewhere different.

5.1.2 Bayesian Interface

The aim of Bayesian Interface [3] is to determine the quantity Θ which can be represented

as finite collection of random variables wrt. observation X = (X1,X2,,Xn). The proba-

bility distribution of the variable Θ can be found by using the Bayes’ Rule;

pΘ|X(θ|x) =
pΘ(θ)pX |Θ(x|θ)

∑
θ′

pΘ(θ′)pX |Θ(x|θ′)
(5.2)

Where X represents the observations and all are discrete variables. Since the pixel

values are discrete this formulation is sufficient.

The estimation can be calculated for multidimensional values if required.

5.1.3 MAP Estimation

Posterior probability is a measurement of a random event after taking some information

in consideration, as it has a close meaning of statistical probability. The approach can be

simplified as;

1. The desired calculation of probability of parameters θ given the evidence X : p(θ|x)

2. Given the prior information about θ p(θ)

3. The evidence X: p(x|θ)

Then; p(θ|x) = p(θ)p(x|θ)
p(x)

The posterior probability can be written in terms of Bayes’ Theorem as well.

The MAP estimation aims to maximize the value of the posterior distribution. The

25

MAP rule is;

θMAP = argmax
θ

p(θ|x) (5.3)

As the probability density function is a function dependent on θ the maximum value wrt.

θ can be calculated by computing;

∗
θ← d

dθ
(p(θ|x)) |

θ=
∗
θ

=
d

dθ

(p(θ)p(x|θ)
p(x)

)
|

θ=
∗
θ

= 0 (5.4)

It’s clear that the probability of the observed values p(x) is not dependent on θ values.

As p(x) is nothing but a constant for the operation it can be ignored while calculating

argmax().

In denoising problem we have the noisy data as the observation and have the prior

beliefs that the original signal has the probability distribution of a Laplacian and the noise

has the characteristics of a Gaussian;

y(:=noisy signal) = x(:=original signal)+n(:=noise)

p(x|y) = p(x)p(y|x)
p(y)

Where; p(x) =Laplacian and p(y|x) = p(n) =Gaussian

It’s clear that the estimated value of Px|y
[
x | y
]

is in the form of Gaussian as it they are

related with the noise n. Also the aim is to find the difference dependent on x where Py[y]

makes no difference. Also taking logarithm of the function doesn’t effect the result. The

equation can be simplified as;

argmax
x

((y− x)2

2
+λ|x|

)
= argmax

x
f (x,y,λ)

x∗ = (x|∂ f (x,y,λ)
∂x

= 0) = g(y,λ)
(5.5)

The result is dependent on sig(x) also the argument x is a function of λ and y. This

shows the argument is also dependent on sig(g(y,λ)).

The final result is;

26

x∗ =


y+λ if y ∈ (−∞,−λ)

0 if y ∈ [−λ,λ]

y−λ if y ∈ (λ,∞)

Thresholding function is used to smooth the image and remove noise effects. y is one

of the values of the input signal, λ is threshold. Which is widely examined in inpainting.

It’s unnecessary to give MATLAB codes for thresholding and wavelet transforms

again since they are already explained in the inpainting section.

5.2 Estimation of λ (SURE)

As one of the prior problems of inpainting, determining the threshold value in denoising

problem is important as well. Although there’s no criterion for λ in inpainting problem, it

is possible to approximate the best λ value from the noisy signal in denoising under some

assumptions [9].

Estimation of λ is highly dependent on the power of the signal. Since the reconstruc-

tion of the signal should match the original one, λ can be calculated by using RMS or

SNR. λ value is the one which satisfies RMSmin or SNRmax

SNR = 10× log
(Psig

Pnoise

)
RMS = ∑

i
(T H(yi)− yi)

Given methods require the original signal for calculation. The problem is to estimate

the original signal from the given input. Again if the noise is considered to have a Gaus-

sian form it’s possible to calculate RMS by using SURE.

E(|(T H(y)− x)|2) = E(|(T H(y)− (y−n))|2)

= E(|T H(y)− y|2)+2×E(|(T H(y)− y)×n|)+E(n2)
(5.6)

n ∼N (0,σ2) (the noise has normal distribution with zero mean and with variance σ.)

i f E(n) = 0 and E(n2)−E2(n) = σ2 then E(n2) = σ2

There are finitely many numbers which have their exact values to calculate

E(|T H(y)− y|2) = (∑
i
(T H(yi)− yi))

2

27

Second term is can be calculated by using Gaussian pdf and integration by parts.

The final SURE statement;

∗
SURE = ∑

i
|T H(yi)− yi|2 +2σ

2T H ′(yi)−σ
2 (5.7)

Where TH is the thresholding function. It’s clear that the variance is assumed to be

known since σ2 can be calculated almost perfectly by statisticians. SURE estimation de-

pends on the thresholding function. The function we use is;

T H(y) =


y+λ if y ∈ (−∞,−λ)

0 if y ∈ [−λ,λ]

y−λ if y ∈ (λ,∞)

Then the SURE estimation can be modified by using this function as;

SURERMS =


∑
[
|yi|2−σ2] if |yi| ≤ λ

∑
[
λ2 +σ2] if |yi|> λ

The MAT LAB function exactly follows the original one. RMSandSURERMS functions;

1 SURE=sum(sum(R(abs(R)<=lambda).ˆ2))+sum(sum(abs(R)>lambda))*...
2 (lambdaˆ2+2*stdevˆ2)-stdevˆ2*numel(R);
3 RMS(n)=sum(sum((TR-I).ˆ2));

Example results for SNRinit = 10;

Figure 5.1: RMS-SURE values

DIFF(n) = (RMS(n)−SURE(n)/RMS(n))values;

28

1 min(DIFF);
2 ans = 2.1184e -004
3 max(DIFF)
4 ans = 2.6466e -004

The factorization values are in [2%,3%] which is acceptable. The difference between

between RMS and SURERMS increases as SNRinit decreases. This is because SURE esti-

mation is mainly related with received signal. Lesser information about the main signal

leads to more difficulties in approximation. In contrast, RMS can only calculated by using

the original form of the image (The results are checked for SNRinit ∈ (Z+ and [5,100])).

5.3 Combination

As there’s a solution for the denoising problem and there exists a well approximation for

the single thresholding value, the problem can be solved. The image undergoes DWT in

first place, this is because it decreases the effect of the noise in each pixel, and as the

transformation is orthogonal it does not change the power density of the matrix and does

not effect the SURE estimation.

MATLAB code and resultsfor DWT step-size 5;

1 %I:=input signal
2 %r:=noisy signal
3 %step:=5
4 R=DWT(r,step);
5 org=(DWT(I,step));
6

7 for(n=1:length(lambda))
8

9 Z=MinCF(R,lambda(n));
10

11 RMS(n)=sum(sum(abs(Z-org).ˆ2));
12 SURE(n)=sum(sum(R(abs(R)<=lambda(n)).ˆ2))...
13 +sum(sum(abs(R)>lambda(n)))*(lambda(n)ˆ2+2*stdevˆ2)-...
14 stdevˆ2*numel(R);
15 DIFF(n)=abs((RMS(n)-SURE(n))/RMS(n));
16

17 if(n==1) lambdax=lambda(1);
18 else if(RMS(n)<RMS(n-1)) lambdax=lambda(n);
19 end
20 end
21

22 if(n==1) lambday=lambda(1); SUREmin=SURE(1); Zmin=Z;
23 else if(SURE(n)<SUREmin) lambday=lambda(n);...
24 SUREmin=SURE(n); Zmin=Z;
25 end
26 end
27

29

28 end
29 II=IDWT(Zmin ,step);

Sample results;

Figure 5.2: De-Noising Process SNRinit = 9

The lambda difference is;

1 lambdax -lambday
2 ans = -3.1473

30

Results

In this project, ’Image Inpainting problem is constructed and solved. As can be seen a

damaged image can be restored into its original form approximately with sufficient thresh-

olding values. Also the algorithm should be repeated efficient times which has a trade off

with time and wellness.

This project also includes important information about wavelet operations and their

effects. All the operations are the results of the solutions of problems. Only Douglas

Rachford algorithm does not have an interpretation in the project. However, the inpaint-

ing problem has been changed into suitable form.

During the preparation, Denoising and Stein’s Unbiased Risk Estimation is studied.

The solution is modelled and verified by using MATLAB. Almost entire MATLAB im-

plementation algorithms are products of this project.

Finally, the signal processing has a wide area of usage. Inpainting problem is one of

the prior problems in the discipline. The project clarifies the mathematical background

between the inpainting operation and can be used for expanding the understanding of

such problems. In addition by using this solution better algorithms for inpainting can be

developed.

Bibliography

[1] Afonso, M., Bioucas-Dias, J., and Figueiredo, M. (2010). Fast image recovery using

variable splitting and constrained optimization. Image Processing, IEEE Transac-

tions on, 19(9):2345–2356.

[2] Bayram, I. and Kamasak, M. (2013). A simple prior for audio signals. Image Pro-

cessing, IEEE Transactions on, 21(6):95–110.

[3] Bertsekas, D. and Tsitsiklis, J. (2002). Introduction To Probability. Athena Scientific

books. Athena Scientific.

[4] Mathworks (n.d.). Matlab documentation. htt p://www.mathworks.de/de/hel p/-

matlab/. Accessed: May 2014.

[5] Oppenheim, A. V., Schafer, R. W., and Buck, J. R. (1999). Discrete-time Signal

Processing (2Nd Ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[6] Oppenheim, A. V., Willsky, A. S., and Nawab, S. H. (1996). Signals &Amp; Systems

(2Nd Ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[7] Selesnick, I. (2013). A derivation of the soft-thresholding function.

htt p://eeweb.poly.edu/iselesni/lecturenotes/. Accessed: May 2014.

[8] Vaidyanathan, P. P. (1990). Multirate digital filters, filter banks, polyphase networks,

and applications: A tutorial. Proceedings of the IEEE, 78(1):56–93.

[9] Van De Ville, D. and Kocher, M. (2009). Sure-based non-local means. Signal Pro-

cessing Letters, IEEE, 16(11):973–976.

[10] Vetterli, M. and Kovačević, J. (1995). Wavelets and subband coding. Prentice Hall

PTR.

32

Appendix

Haar Analysis

1 function [c,d] = HaarAnalysis(x)
2 % Input variables
3 % x : input signal
4 % Output Variables
5 % c : Lowpass coefficients
6 % d : Highpass coefficients
7

8 if mod(length(x),2),
9 x = [x 0];

10 end
11

12 c = (x(1:2 :end) + x(2:2 :end))/sqrt(2);
13 d = (x(1:2 :end) - x(2:2 :end))/sqrt(2);
14 end

Haar Synthesis

1 function [y] = HaarSynthesis(c,d)
2 %Input variables
3 %c : Lowpass coefficents
4 %d : Highpass coefficents
5 %Output variables
6 %y : Output signal
7

8 y = zeros(1,2*length(c));
9 y(1:2 :end) = (c + d)/sqrt(2);

10 y(2:2 :end) = (c - d)/sqrt(2);

DWT

1 function [II , step] = DWT(I , step)
2 %I := Input signal (uint8)
3 %steup := number of steps
4 %II := Output signal (double)
5

6 %c := Lowpass coefficents
7 %d := Highpass coefficents

33

8

9 %Conversion to double required
10 %uint8 varies between 0-255 which can't hold negative numbers
11 %negative numbers are recieved while calculating d(highpass coef.)
12 I=double(I);
13

14 [m,n]=size(I);
15

16 %number of steps
17 for(x = 0 : step -1)
18

19 %Rowwise analysis
20 for(i=1:m/(2ˆx))
21 [c,d]=HaarAnalysis(I(i,1:m/(2ˆx)));
22 I(i,1:m/(2ˆx))=[c d];
23 end
24 %Columnwise analysis
25 for(i=1:n/(2ˆx))
26 [c,d]=HaarAnalysis(transpose(I(1:n/(2ˆx),i)));
27 I(1:n/(2ˆx),i)=[transpose(c);transpose(d)];
28 end
29 end
30 II=I;
31 end

IDWT

1 function [II] = IDWT(I , step)
2 %I := Input signal (double)
3 %II := Output signal (uint8)
4

5 %c := Lowpass coefficents
6 %d := Highpass coefficents
7

8 [m,n]=size(I);
9

10 for(k = 0 : step -1)
11

12 x = step -1-k;
13

14 c=I(1:m/(2ˆ(x+1)),1:n/(2ˆx));
15 d=I(m/(2ˆ(x+1))+1:m/(2ˆx),1:n/(2ˆx));
16

17 %Columnwise synthesis
18 for(i=1:n/(2ˆx))
19 I(1:m/(2ˆx),i)=transpose(HaarSynthesis..
20 ..(transpose(c(:,i)),transpose(d(:,i))));
21 end
22 c=I(1:m/(2ˆx),1:n/(2ˆ(x+1)));
23 d=I(1:m/(2ˆx),n/(2ˆ(x+1))+1:n/(2ˆx));
24 %Rowwise synthesis
25 for(i=1:m/(2ˆx))
26 I(i,1:n/(2ˆx))=HaarSynthesis(c(i,:),d(i,:));
27 end
28 end
29

34

30 II=I;
31 end

MINCF

1 function [xmin] = MinCF (y, lambda)
2

3 % f(x) = (((y - x)ˆ2)/2) + lambda * abs(x)
4 % xmin = arg (min F(y, lambda))
5

6 [m,n] = size(y);
7 xmin = zeros(m,n);
8

9 for (ii=1 : m)
10 for (i=1 : n)
11

12 if (lambda < y(ii,i))
13 xmin(ii,i) = y(ii,i) - lambda;
14

15 elseif(y(ii,i) < -lambda)
16 xmin(ii,i) = y(ii,i) + lambda;
17

18 else xmin(ii,i) = 0;
19

20 end
21 end
22 end

Demo Noise

1 % Noise addition / removal demo
2 close all;
3 clear all;
4

5 %INPUT DATA
6 I=imread('baboon.bmp');
7 I=double(I);
8

9 %INPUT VALUES
10 SNRinit=12; %initial value of SNR
11 step=5; %step -size of HAAR decomposition
12 %---
13

14

15 lambdax=0;
16 [m,n]=size(I);
17 originalP = sum(sum(I.ˆ2));
18

19 stdev=(sqrt(originalP /(10ˆ(SNRinit/10)*m*n)));
20 % r=imnoise(I,'gaussia n',0,0.01);
21

22 noise=stdev*randn(size(I));
23 r=I+noise;
24

35

25 Pnoise=sum(sum((noise).ˆ2));
26

27 SNRstartdiff=SNRinit -(10*(log(originalP/Pnoise)/log(10)));
28

29 figure;
30 imagesc(I);
31 colormap(gray);
32 title('Original');
33

34 figure;
35 imagesc(r);
36 colormap(gray);
37 title('With Gaussian Noise');
38

39 R=DWT(r,step);
40

41 figure;
42 imagesc(R);
43 colormap(gray);
44 title('Transformation of Noisy Image');
45

46 org=(DWT(I,step));
47

48

49

50

51 fa = 50;
52 lambda=(1:0.25:30)*(fa * 10ˆ(-SNRinit /10)); %lambda value interval
53

54 DIFF=zeros(1,length(lambda));
55 SURE=zeros(1,length(lambda));
56 RMS=zeros(1,length(lambda));
57

58

59

60 for(n=1:length(lambda))
61

62 Z=MinCF(R,lambda(n));
63

64 RMS(n)=sum(sum(abs(Z-org).ˆ2));
65 SURE(n)=sum(sum(R(abs(R)<=lambda(n)).ˆ2))..
66 ..+sum(sum(abs(R)>lambda(n)))*(lambda(n)ˆ2+2*stdevˆ2)-..
67 ..stdevˆ2*numel(R);
68 DIFF(n)=abs((RMS(n)-SURE(n))/RMS(n));
69

70 if(n==1) lambdax=lambda(1);
71 else if(RMS(n)<RMS(n-1)) lambdax=lambda(n);
72 end
73 end
74

75 if(n==1) lambday=lambda(1); SUREmin=SURE(1); Zmin=Z;
76 else if(SURE(n)<SUREmin) lambday=lambda(n); SUREmin=SURE(n); Zmin=Z;
77 end
78 end
79

80 end
81

82 II=IDWT(Zmin ,step);

36

83

84 fac=min(RMS(n))/min(SURE(n));
85 figure();
86 plot(lambda ,RMS,'b');
87 title(strcat('RMS-SURE -lambda',' fac=',num2str(fac)));
88

89 hold;
90 plot(lambda ,SURE*fac,'r');
91 legend('RMS','SURE');
92 xlabel('lambda');
93

94

95 figure;
96 imagesc(II);
97 colormap(gray);
98 title('Removed -Noise');
99

100 figure;
101 imagesc(r-double(I));
102 colormap(gray);
103 title('First Difference');
104

105 figure;
106 imagesc(II-double(I));
107 colormap(gray);
108 title('Last Difference');

Demo Inpainting

1 %DEMO for Image INPAINTING (2D)
2

3 close all;
4 clear all;
5

6 %INPUT image
7 i=double(imread('house.bmp'));
8 %PNG format should be used for paint modification. Otherwise the Matlab
9 %transforms the histogram and changes the outlook.

10 id=double(rgb2gray(imread('houseasd.png')));
11 itnum=20; %Number of iterations
12 step=5; %DWT,IDWT stepsize
13 lambda =40:110;
14 RMS=zeros(length(lambda));
15

16 %Damaging the Signal
17 % id=i;
18 % id(60:120 ,70)=0;
19

20 %Indexes of '0' (damaged) elements. This is required to determine the
21 %region to be transferred.
22 [m,n]=find(id <1);
23

24 figure();
25 imagesc(i);
26 title('Original Image');
27 colormap('gray');

37

28

29 figure();
30 imagesc(id);
31 title('Damaged Image');
32 colormap('gray');
33

34 %APPROXIMATION
35

36

37 for lambdacounter=1:length(lambda)
38 za=id;
39 zb=id;
40 for iterations=1:itnum
41

42 for(count=1:(length(m)))
43 za(m(count),n(count))=zb(m(count),n(count));
44 end
45

46 zb=IDWT(MinCF(DWT((2*za..
47 ..-zb),step),lambda(lambdacounter)),step)+(zb-za);
48

49 end
50

51 for(count=1:(length(m)))
52 za(m(count),n(count))=zb(m(count),n(count));
53

54 end
55 RMS(lambdacounter)=sum(sum((za-i).ˆ2));
56 end
57

58 figure();
59 imagesc(za);
60 title('Approximation');
61 colormap('gray');

Inpainting Function

1 function [za] = InpaintingFunct(image ,lambda ,stepsize ,iteratesize)
2 %Inpainting function basicly gets the image as an input ,
3 %applies DWT and IDWT functionts wrt. 'stepsize', soft
4 %thresholds the output wrt. 'lambda' and completes the
5 %process after 'iteratesize' number of interations
6

7 [m,n]=find(image <1);
8

9 za=image;
10 zb=image;
11

12 for iterations=1:iteratesize
13

14 for(count=1:(length(m)))
15 za(m(count),n(count))=zb(m(count),n(count));
16 end
17

18 zb=IDWT(MinCF(DWT((2*za-zb),stepsize),lambda),stepsize)+(zb-za);
19

38

20 end
21

22 for(count=1:(length(m)))
23 za(m(count),n(count))=zb(m(count),n(count));
24 end
25

26 end

GUI
Gui data is not necessary to be shown. Since the only thing that the ’callback’ functions
do is to declare public variables, computations or activating others. The linkage does not
include lethal information about the project.

39

